Particle Size and Number Emissions from Dual-Fuel Reactivity Controlled Compression Ignition

Christopher Kolodziej, Jesús Benajes
CMT – Motores Térmicos
Universitat Politècnica de València

Martin Wissink, Reed Hanson, Derek Splitter, and Rolf D. Reitz
Engine Research Center
University of Wisconsin

Cambridge Particle Meeting
18 May, 2012
University of Cambridge, UK
Outline

• Introduction
• Effects of Gasoline SOI
• Effects of Gasoline/Diesel Proportion
• Conclusions
What is Dual-Fuel RCCI?

- **Premixed Combustion**
 - Very Low PM and NO\textsubscript{x} emissions through low local equivalence ratios during combustion

- **In-Cylinder Blending of Higher and Lower Reactivity Fuels**
 - Increased control of ignition (longer premixing possible)
 - Stratification of fuel reactivity and local equivalence ratio for lower rate of combustion
 - Greatly reduced EGR dependence compared to premixed diesel LTC concepts

- **Increased Brake Thermal Efficiency**
 - Through reduced heat transfer losses and optimized combustion phasing
 - Decreased specific fuel consumption
 - Decreased specific CO\textsubscript{2} emissions
Objectives

• Measure particle size and number emissions from heavy-duty dual-fuel RCCI with both fuels injected in-cylinder

• Study effects of in-cylinder gasoline injection timing on exhaust particle emissions (while fixing in-cylinder diesel injection timings)

• Investigate effects of gasoline/diesel proportioning on exhaust particle emissions
Conv. Diesel Particle Size Distribution

Kittelson Model

“The nuclei mode typically contains 1-20% of the particle mass and more than 90% of the particle number.”

Kawai Model

“Hypothetical model for Diesel nano-particle distribution.”
Montajir, Kawai, Goto, Odaka, SAE 2005-01-0187
• Mono-modal shaped size distribution
• Decreased number of larger particles was accompanied by increased number of smaller particles

1.35 bar P_{int}

SAE 2010-01-1121
(Benajes, Novella, Arthozoul, Kolodziej)
Premixed Diesel LTC PM - Impingement

- Liquid fuel impingement during earlier injections
- Initially only increased number of larger particles
- Bi-modal size distribution when number of smaller particles increased as well (by 2 orders of magnitude)

Benajes, Garcia-Oliver, Novella, Kolodziej, Fuel, 2011
• Decreased intake O₂ caused a general increase in mono-modal size distributions, though PM mass was similar
• Much fewer particles larger than 100 nm compared to conventional diesel combustion (higher P_{int} than previous slide)
• Diameter of peak number concentration smaller than 60 nm
Test Methodology

- Sweep gasoline injection timing from -300 to -360 °aTDC at each fuel reactivity test condition
- Vary intake temperature to maintain constant CA50
- Vary intake pressure to maintain overall equivalence ratio

<table>
<thead>
<tr>
<th>Gasoline In-Cylinder Injection Timing [°aTDC]</th>
<th>-360, -340, -320, -300</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Diesel In-Cylinder Injection Timing [°aTDC]</td>
<td>-58</td>
</tr>
<tr>
<td>Second Diesel In-Cylinder Injection Timing [°aTDC]</td>
<td>-38</td>
</tr>
<tr>
<td>Gasoline Proportion [%]</td>
<td>65 74 80 84</td>
</tr>
<tr>
<td>Diesel Proportion [%]</td>
<td>35 26 20 16</td>
</tr>
<tr>
<td>Intake Temperature [°aTDC]</td>
<td>27 37 47 57</td>
</tr>
<tr>
<td>Intake Pressure [bar]</td>
<td>1.09 1.1 1.13 1.15</td>
</tr>
<tr>
<td>EGR Rate [%]</td>
<td>0 0 0 0</td>
</tr>
</tbody>
</table>
RCCI Exhaust Dilution Conditions

- Varied heated primary dilution air ratio
- Fixed ambient-temperature secondary dilution ratio at maximum of Dekati FPS-4000 diluter
- Total dilution ratio (TDR) of 130-135:1 was used for testing
Outline

• Introduction
• Effects of Gasoline SOI
• Effects of Gasoline/Diesel Proportion
• Conclusions
Effects of Gasoline SOI

- Advanced gasoline injection timing caused slight PM mass increase from -300 to -340°aTDC
- More noticeable increase from -340 to -360°aTDC

- Slight decrease in total particle numbers from -360 to -300°aTDC
- Two-fold higher particle number emissions from lowest gasoline proportion
Effects of Gasoline SOI

-360°aTDC
-340°aTDC
-320°aTDC
-300°aTDC

Mobility Diameter [nm]

\(\frac{dN}{d\log D_p} \) [#/cc]

65% Gas : 35% Diesel

74% Gas : 26% Diesel

80% Gas : 20% Diesel

84% Gas : 16% Diesel
Conclusions (Gasoline SOI)

- Advancing gasoline SOI increased PM mass and number emissions for all gasoline cases, especially from -340 to -360°aTDC.
- Change from -340 to -360°aTDC was characterized by a sharp increase in accumulation mode and simultaneous decrease in nucleation mode (similar to diesel LTC SOI study).
- Decreased number of larger particles with increased number of smaller particles produced less change in total particle numbers than in PM mass.
- Further work is needed to determine if decreased number of larger particles (and PM mass) was due to decreased formation or increased oxidation effects.
Outline

• Introduction
• Effects of Gasoline SOI
• Effects of Gasoline/Diesel Proportion
• Conclusions
Effects of Gasoline Proportion

- Increased gasoline proportion, decreased PM mass
- Gasoline -360°aTDC SOI had higher PM for all fuel blends
- Increased gasoline proportion also decreased total particle numbers
Conclusions (Fuels)

- Increasing gasoline proportion caused a simultaneous decrease in numbers of larger and smaller sized particles (similar to diesel LTC intake O₂ study)
- Further work needed to understand driver of the simultaneous decrease in both the smaller and larger sized particles with increased gasoline proportion
Outline

• Introduction
• Effects of Gasoline SOI
• Effects of Gasoline/Diesel Proportion
• Conclusions
Conclusions (General)

- PM mass emissions were reduced below the Smokemeter minimum detection limit (<0.05FSN) in lowest engine operating conditions.
- Particle number emissions were reduced to a similar order of magnitude as the “best” premixed diesel LTC cases (12-13% Intake O₂ with 1.6 bar P_{int}).

Although RCCI is a form of premixed combustion, its particle size distributions were bi-modal (unlike the mono-modal size distributions typical of premixed diesel LTC).
Thank you for your attention.
Questions?

Christopher Kolodziej
chko@mot.upv.es
ckolodziej@hotmail.com