Fabricating Solid State Gas Sensors by Aerosol-based Techniques

George Biskos
Department of Chemical Engineering, Delft University of Technology, The Netherlands
Department of Environment, University of the Aegean, Greece

May 24, 2013
Motivation

- **Gas Sensors**
 - Emissions control and safety
 - Diagnostics

- **Aerosol-based Techniques for Synthesizing Nanomaterials**
 - Good control over particle size, morphology and composition
 - Tools for assembling nanostructures
Nanoparticles Synthesis in the Gas Phase

- **Evaporation/Condensation**
 - Tube Furnaces
 - Spark Discharges
 - Glowing Wires

- **Solution Spray**
 - Atomization
 - Electrospray

- **Flame Synthesis**
H₂ Sensor base on Pd Nanomaterials
Fabrication of a Pd-based Nanomaterials

Glowing Wire Aerosol Generator

Pd Aerosol

Aerosol Focusing Lens

Pd Nanoparticle-wire Sensor

Ar
Structure of the Pd-based Nanomaterial
Structure of the Pd-based Nanomaterial
Stabilization of the Structure

Current (A) vs. Voltage (V)
Response of the Pd Nanoparticle H$_2$ Sensor
Sensitivity of the H$_2$ Sensor

- H$_2$: 93ppm, 73ppm, 2.5ppm, 780ppb
- Ar: 210ppm, 14ppm, 195ppb

Normalized Conductivity vs. Time (s)
Electrospray Deposition

Precursor Solution

High Voltage

Heated Surface
Temperature-dependent Morphology Changes of WO$_3$ Nanostructures
Electrospray/Electrostatic Deposition

(a) Temperature gradient = Solvent evaporation = droplet shrinkage

(b) Oxidation or partial oxidation of the precursor

(c) Particle agglomeration on preferential landing areas

(d) Tree-like morphology
Growth of Nanowires

- Aluminum foil
- Silicon wafer
- Alumina
- Glass
Controlling the Growth of Nanowires

Post-deposition of KOH

Annealing
Sensitivity Measurements
Sensitivity Measurements

![Graph showing sensitivity measurements](image)

- Sensitivity: $\frac{R_{\text{gas}}}{R_{\text{argon}}}$
- Temperature range: 0°C to 300°C
- 10 ppm NO suboxides

The graph illustrates the sensitivity of a device to NO suboxides as a function of temperature. The sensitivity peaks at around 200°C, indicating optimal performance in this temperature range.
Preliminary Tests

WO3 @ 350 °C

Resistence vs. Time (min)

Air

0 ppm
5 ppm
10 ppm
5 ppm
2.5 ppm
1 ppm

0 50 100 150 200
Summary

• Aerosol Techniques for Synthesizing Nanostructures Materials for Gas Sensors
 • Nanoparticle Generation
 • Nanomaterial Assembly
• H₂ Sensor
 • Synthesis of Pd Nanostructures
 • Sintering by Annealing
• NOₓ Sensor
 • Synthesis of WO₃ Nanostructures
 • Decorate with Nanowires for Enhanced Performance…
The Catch and Outlook

• Catch
 • Analyte in high purity Ar, N₂, or synthetic Air
 • If we use ambient air, the story changes completely

• Further work
 • Selectivity
 • Repeatability (long term)
 • Sensitivity (?)