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What is Black Carbon?

nNBl ack Carbon I s a distinct
carbonaceous material that is formed il

primarily in flames, is directly emitted

to the atmosphere, and has a unique
combination of phy

A strongly absorbs visible light

A'is refractory with a vaporization
temperature near 4000 K

A exists as an aggregate of small
spheres

A\is insoluble in water and common
organic solvents

Bond et al., ABounding the role of badacsdkscmamemtowhodJounmal cli mate system: A scient
Geophysical Research i Atmospheres, 118, (2013)
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Relative Effect of Aerosols on Climate

Components of radiative forcing for principal emissions
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Impacts of Black Carbon

A BC is the most lightZbsorbing nano-aerosol
A BC absorbs 680x more energy by mass than CO,
A BC is a key contributor to global warming

A BC effects are stronger in sensitive regions, i.e. faster ice and snow
melt in the Canadian Arctic

A BC mitigation could rapidly slow the rate of climate change, by up to
40% within 20 years

A BC is implicated in numerous adverse health outcomes

For BC and related combustion emissions, on a global scale

A fi t hdeption of aggressive standards by 2015 would annually
prevent the deaths of 200,000 people, save 13 million tons of grain
and $1.5 trillion in health dama

Shindell et al, Nature Climate Change, 1 (2011)
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What Attributes of PM Need to be Measured?

A regulated gaseous pollutants are specific
i CO,, CO, SO,, NO,, HC, etc.
I measurement of gaseous concentration

A current regulatory focus for PM is mass concentration in most
jurisdictions (PM,, and PM, ;)

A Europe has added number concentration for on-road vehicle
emissions

A health and environmental researchers and policymakers are
asking for more specificity on PM
I mass concentration at smaller size fractions (PM; 5, PM; s, PM; ;?)
I size and size distribution
I composition (black carbon, organics, sulphates, nitrates, etc.)
I surface area and surface reactivity
I optical properties (absorption and scattering)
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Measurement Issues ()

Traceability
A many instruments offer no opportunity for traceability

A filter-based mass can be traceable
I I1ssues with sensitivity (mass of particulate vs. mass of filter)
I Issues with filter artifacts
A gaseous adsorption

A fibre loss
A less than 100% removal efficiency

I Issues with size cutoff
A impactors and cyclones do not cut sharply at threshold (i.e. PM, ;)

A number concentration can be made traceable (sort of)
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Measurement Issues (ll)

Reliability and Repeatability
A difficult to establish
Uncertainty

A large uncertainties (can be order of magnitude in number,
factor of 2 in mass)

Reference Materials
Aairborne particulate RMs dono

Representativeness

A all ex-situ methods suffer from sampling issues

I how representative is the sample at the measurement location of
the airborne particulates?

A losses, agglomeration, evaporation/condensation
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Measurement Issues (llI)

Measuring properties with different methods

A most instruments are proprietary
I each manufacturer implements a different measurement principle

A difficult to intercompare results obtained with different
Instruments

A examples
I size
A mobility diameter, aerodynamic diameter, geometric diameter, radius of
gyration

T black carbon mass

A directly measured, or inferred from optical absorption, extinction, or
emission measurements
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Measurement Issues (1V)

Measuring specific properties with a myriad of interferences

A selectivity

I how does one measure properties of one component of PM when
many others are present?

A sensitivity
i atmospheric concentrations are often very low (<1 pg/ms3)
A gas composition
I can be highly variable
I can influence measurement
A morphology
I spherical particles vs. fractal aggregates
A single particle vs. ensemble measurements
A variations over time, elevation, temperature, humidity, sunlight, etc.
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Standard Method Balloted by SAE E-31 Committee:

Mass Instrument Calibration Procedures

Calibration

A mass instruments to be calibrated with NIOSH 5040
procedure (comparison to mass of EC collected on a filter)

A requires source of soot that is >80% EC
I optimum loading is ~200 ug EC on a 47 mm quartz filter
i at nominal 100 pg/m3 concentration, requires 80 min/filter

Annual Calibration
Arequires 3 repeats each at 0, 100, 250, and 500 pg/m3

Type Certification
Arequires 6 repeats each at 0, 50, 100, 500, and 1000 pg/m3



Standard Method Balloted by SAE E-31 Committee:

Development of BC Mass Calibration at NRC
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Example SAE AIR6241 Calibration Result (Artium LIl 300)
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Example SAE AIR6241 Calibration Result (AVL MSS)
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Future Method for Mass Instrument Calibration

NIOSH 5040

A mass instruments will be calibrated with NIOSH 5040 annually i
method is well known, but uncertainty is large (17% at 23 ug/m?), it
IS not traceable, experiments are very time consuming
CPMA-electrometer method

A traceable i function of rotational speed, voltage, flow rate, current,
and electron charge (physics-based approach)

A Uncertainty of ~5%
A 10 point calibration in less than one hour
A excellent method for low mass concentrations (< 100 pg/m?3)
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Publication on CPMA-Electrometer Method in 2013
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1. INTRODUCTION

The Aerosol Particle Mass Analyzer (APM; Ehara et al.
1096) and Centrifugal Particle Mass Analyzer (CPMA; Olfert
and Collings 2005) are instruments that use opposing electric

instrument type as a CPMA, this method should also apply to
the APM.

CPMAs have been used with a DMA and a Condensation
Particle Counter (CPC) to measure effective density and mass-
maobility exponent (Park et al. 2003, Olfert et al. 2007). In this
situation, consideration has to be made of any multiply charged
particles exiting the DMA. We examine here instead a charger
directly connected to the inlet of the CPMA and an aerosol elec-

tromater doumnetraam nf a CPAMA and cancidar the affact af tha

A calculated combined uncertainty (k=2) for the system of & 5 %
A technique developed with silicon oil aerosol

[k=2 represents a 95% confidence interval]
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Experimental Setup




Experimental Setup
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LIl Measurement (pg/m3)

Comparison of Mass Instruments to CPMA-

Electrometer System
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A mass instruments calibrated with NIOSH 5040 EC over a few weeks
(e.g. SN0340 was calibrated in different NIOSH 5040 batch)

A uncertainty in NIOSH 5040 is large, so compare linearity, not slopes
between instruments
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Measurements With and Without a Charge Neutralizer

Before the Mass Instrument
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A charge on particles appears to have minimal effect on
measurements made by mass instruments
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Measurements at Different CPMA Resolutions

A CPMA resolution setting appears to have minimal effect on
measurements made by mass instruments
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