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• Information of PM composition helps us develop strategies of 

mitigating/adapting the PM issue in GDI vehicles

• Soot oxidation characteristics are important for durability of 

GPFs,  and thermal management in the regeneration process

In this study, a Thermal Gravimetric Analysis (TGA) was used  

for study both PM composition and soot oxidation characteristics

Study objective
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Experimental Setup and Test Conditions

• TGA is a widely used instrument in the study of PM

• A sample is placed inside a temperature-programed 

furnace

• Sample atmosphere can be any gas, such as N2 and air

• Sample mass is constantly monitored

Two factors are examined in the application of 

TGA in soot oxidation:

1. Heating ramp

2. Sample mass
Perkinelmer TGA
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1: Initial nitrogen atmosphere, 

    hold 30 min at 313 K

2: Heating up to 773 K from 313 K at 3 K/min

3: Hold 773 K for 30 min

4: Cooling down to 373 K from 773 K at 10 K/min

5: Switch to air atmosphere (40 ml/min), heating up

    to 923 K at x K/min (in the figure, x=3)

6: Hold 923 K for 20 min

7: Cooling down to 40 K at 50 K/min

Devolatilization (N2):

Volatile material mass

Soot oxidation (air)

Soot mass

Soot oxidation profile
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1: Initial nitrogen atmosphere, 

    hold 30 min at 313 K

2: Heating up to 773 K from 313 K at 3 K/min

3: Hold 773 K for 30 min

4: Cooling down to 373 K from 773 K at 10 K/min

5: Switch to air atmosphere (40 ml/min), heating up

    to 923 K at x K/min (in the figure, x=3)

6: Hold 923 K for 20 min

7: Cooling down to 40 K at 50 K/min
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ὃὩὼὴ ά ὴ (1)

ÌÎ ÌÎὃὴ (2)

m: sample mass

t: time

kc: reaction rate constant

A: pre-exponential factor 

Ea: activation energy of the reaction
pO2: partial pressure of oxygen

n and r: reaction orders

R: universal gas constant 

T: the temperature 

Experimental Setup and Test Conditions

Arrhenius-type Reaction Model 

A bigger ‘Ea’ means soot is more 

difficult to be oxidized

Rodríguez-Fernández, J.; Oliva, F.; Vázquez, R. A., Characterization of the Diesel Soot Oxidation Process 
through an Optimized Thermogravimetric Method. Energy & Fuels 2011, 25, (5), 2039-2048.
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Scope Fuel
IMEP 

(bar)
λ

Engine 

speed 

(rpm)

Start of 

Injection 

(°bTDC)

TGA method 

development
ULG 8.5 0.9 1500 100

Effect of fuel
ULG, DMF, 

E25, ETH
8.5 0.9 1500 100

Effect of 

engine load
ULG, DMF 

5.5 and 

8.5
0.9 1500 100

Fuel properties

ULG DMF Ethanol

Chemical 

Formula
C2-C14 C6H8O C2H60

H/C Ratio 1.881 1.333 3

O/C Ratio 0.017 0.167 0.5

Gravimetric 

Oxygen 

Content (%)

0.02 16.67 34.78

Density @ 20ºC 

(kg/m3)
733.2 889.7 790.9

Research 

Octane 

Number

96.8 101.3 107

Motor Octane 

Number 
85.4 88.1 89

Stoichiometric 

Air-Fuel Ratio
14.23 10.72 8.95

LHV (MJ/kg) 42.26 32.89 26.90

LHV (MJ/L) 31 29.3 21.3

Heat of 

Vaporization 

(KJ/kg)

591 332 840

Test matrix

ULG: unleaded gasoline

ETH: ethanol

DMF: 2,5-Dimethylfuran

LHV: lower heating value

Experimental Setup and Test Conditions
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Results. Effect of heating ramp on soot oxidization

• A heating ramp of 3-5 K/min is an optimum setting for gasoline PM analysis

• A high TGA heating ramp of 10-50 K/min results in a shift soot weight profile to 

higher temperature range

Gasoline;  speed=1500 rpm; load=8.5 bar IMEP; λ=0.9;  SOI=100 °bTDC
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Heating ramp 

(K/min)
Ea (kJ/mol)

3 153.0

5 145.0

10 84.0

20 67.1

50 114.5

Results. Effect of heating ramp on soot oxidization

• A heating ramp of 3-5 K/min fit the Arrhenius-type reaction model 

well, indicated by more repeatable activation energy, and higher R2
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Results. Effect of sample mass on soot oxidization

• A soot sample mass higher than 0.04 mg is enough for a reliable PM analysis in 

TGA

• Activation energies are in the range of 146-152.4 kJ/mol

• MMLRTs are in the range of 763-767 K
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Results. Effect of Fuel

• PM composition varies significantly, depending on the fuels being used

• Oxygenated fuel produces PM with a lower soot fraction, compared with 

gasoline 
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speed=1500 rpm; load=8.5 bar IMEP; λ=0.9;  SOI=100 °bTDC



• Soot oxidization varies significantly to fuels

• DMF- and ethanol-generated soot is easier to be oxidized than gasoline-generated soot

Results. Effect of Fuel
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Results. Effect of Fuel

• Nano-structure (size): ULG>DMF>ETH

• Soot burning mode: Soot from oxygenated fuels tend to experience internal burning

• Particulate morphology: soot with highly-ordered carbon structure is more difficult to 

be oxidized.
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• Soot fraction is reduced as engine load is increased

• Unlike gasoline, the composition of DMF-generated PM is more sensitive to 

engine load

Results. Effect of Engine load
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Results. Effect of Engine load

131

153

109 114

698

763

701
724

20

• Unlike that of gasoline-generated soot, Oxidization profile of DMF- generated soot is 

not sensitive to engine load

• As engine load is reduced, soot become easier to be oxidized.

Nano-structure

Particulate morphology



• A slow heating ramp (3-5 K/min) and a minimum mass of soot
sample (0.04 mg) are recommended to obtain repeatable results for
gasoline type of fuels, with which the Arrhenius-type reaction model
fits well.

• PM from a spray guided GDI engine mainly consists of volatilities
(>60%).

• Soot from oxygenated fuels (ethanol and DMF) are easier to oxidize
compared to gasoline indicated by the lowest temperature and
activation energy needed, and are more sensitive to engine load.

Further works

Examine the influence of particulate matter characteristics such as
particulate morphology, nano-structure and soot surface functional
groups on soot reactivity

Conclusions
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• PM composition: Strategy of mitigating/adapting the PM 

issue in GDI vehicles

Reduce PM = reduce volatilities (HC)?

• Soot oxidation: Durability of GPFs,  and thermal 

management in the regeneration process

Study objective

Use of oxygenated fuels such as ethanol helps to increase the durability 

of GPFs and makes regeneration process easier
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