Aircraft Black Carbon Particle Number Emissions – New Predictive Method & Uncertainty Analysis

Marc Stettler¹, Roger Teoh¹, Ulrich Schumann²

¹ Centre for Transport Studies, Department of Civil and Environmental Engineering Imperial College London, London, UK
²Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, 82234 Oberpfaffenhofen, Germany

Cambridge Particle Meeting 2017
24th June 2017
1. Introduction and motivation

2. New method to estimate particle number emissions

3. Results
 1. Validation
 2. Uncertainty analysis
 3. Application to a sample of aircraft activity
 4. Implication for contrail properties

4. Conclusions
Motivation

• Knowledge of soot PSDs and ice nucleation properties is important to accurately predict visible contrail formation

• Higher EI$_n$ leads higher number of ice particles
 • More smaller particles
 • Greater optical depth

• Measurements of ice particles in contrails and lifetimes of contrails suggests EI$_n$ is underpredicted by up to a factor of 3

Q: Is it worth diverting flights to avoid contrail formation?
 • **Quantify BC particle number emissions (and uncertainties)**
 • Contrail model needed to evaluate trade-off with CO$_2$
 • Additional demands on air traffic control and management
Aircraft particle emissions

- Characterised as an **emissions index**: mass/number of particles emitted per kg of fuel burned.

- Mass (EI_m) and number (EI_n) emissions indices are dependent on the engine thrust setting.

- Size distribution (GMD and GSD) of particles is dependent on the engine thrust setting and characterised by a lognormal distribution.

- Morphology (D_{fm} and d_{pp}) of particles is dependent on the engine thrust setting.

Aircraft particle mass (EI_m) estimates

- Smoke number based [1,2]
 - Limited by accuracy of certification smoke numbers

- FOX method [3]
 - Smoke numbers are discarded
 - Semi-empirical model
 - Improved BC mass estimates at ground level and at cruise

- ImFOX [4]
 - ‘Improved FOX’ method
 - Accounts for hydrogen content of fuel (H)
 - Different equations for global air to fuel ratio (AFR) at cruise and ground

- From 2020: ICAO regulation
 - Certification test and limits on non-volatile particulate matter
 - Mass and number

Aircraft particle number (E_{I_n}) estimates

- **E_{I_n}**
 - 10^{14} to 10^{15} per kg fuel burned
 - E.g. Kärcher et al. (2016) [1].

- **E_{I_n}/E_{I_m} ratios**
 - 5×10^{15} to 1.6×10^{15} particles per g(BC)
 - E.g. Döpelheuer (2002) [2].

- **Assumed particle diameter or size distribution**
 - Assume a particle diameter and density
 - E.g. $d = 38$ nm and $\rho = 1000$ kg/m3 (Barrett et al., 2010) [3]

Mobility of fractal aggregates

Free-molecular regime:
\[\text{Kn} = \frac{\lambda}{d_m} > 1 \] (mean free path >> d)

Diffusion limited cluster aggregation (DLCA):
Aerosols aggregate via random Brownian motion

\[n_{pp} \approx \left(\frac{d_m}{d_{pp}} \right)^{D_{fm}} \]

Mass of the aggregate is the sum of the mass of primary particles:
\[m = n_{pp} \rho_0 \left(\frac{\pi}{6} \right) d_{pp}^3 \]

\(D_{fm} \) is the mass-mobility exponent
\(n_{pp} \) is the number of primary particles
\(m \) is the mass of the aggregate
\(\rho_0 \) is the material density of black carbon (1770 ± 8%)
Mass of aggregates

Number of primary particles: \(n_{pp} = \left(\frac{d_m}{d_{pp}} \right)^{D_{fm}} \)

Mass of aggregate: \(m = n_{pp} \rho_0 \left(\frac{\pi}{6} \right) d_{pp}^3 \)

Primary particle diameter: \(d_{pp}[m] = a \ d_m^b \)

\[\therefore m = \rho_0 \left(\frac{\pi}{6} \right) d_m^\phi a^{3-D_{fm}} \]

where \(\phi = D_{fm} + b(3 - D_{fm}) \)
Number and mass of aggregate population

Mass of a collection of aggregates with size distribution \(n(d_m) \):

\[
M = \int_0^\infty m(d_m) n(d_m) \, d\log d_m
\]

\[
= \rho_0 \left(\frac{\pi}{6} \right) a^{3-D_{fm}} \int_0^\infty d_m^\phi n(d_m) \, d\log d_m
\]

\(n(d_m) \) for non-volatile aircraft PM is typically lognormal (single mode). This then becomes the \(\phi \)-th moment of the lognormal distribution:

\[
M = N \rho_0 \left(\frac{\pi}{6} \right) a^{3-D_{fm}} \text{GMD} \phi \exp \left(\frac{\phi^2 \log(\text{GSD})^2}{2} \right)
\]

Re-arrange for \(N \ldots \)

where \(\phi = D_{fm} + b(3 - D_{fm}) \)

Aircraft PM GMD and GSD

GMD

- Ground (CFM56-2-C1, DC-8)
- Ground (Durdina et al. 2014)
- Ground (JT8D-219, MD-88)
- Ground (CF6-80A2, B767-300)
- Ground (CF6-80C2B8F, B767-400ER)
- Ground (PW2037, B757-200)
- Cruise (CFM56-2-C1, DC-8)

Ground GMD:
\[GMD = 0.2289(F/F_{00} \%) + 14.153 \]
\[R^2 = 0.7378 \]

Cruise GMD:
\[GMD = 0.5739(F/F_{00} \%) + 9.9786 \]
\[R^2 = 0.8926 \]

~ ±25%

GSD

- Ground (CFM56-2-C1, DC-8)
- Ground (Durdina et al. 2014)
- Ground (JT8D-219, MD-88)
- Ground (CF6-80A2, B767-300)
- Ground (CF6-80C2B8F, B767-400ER)
- Ground (PW2037, B757-200)
- Cruise (CFM56-2-C1, DC-8)

Ground GSD:
\[GSD = 0.0039(F/F_{00} \%) + 1.5097 \]
\[R^2 = 0.7047 \]

Cruise GSD:
Average GSD = 1.72

~ ±14.5%
Mass-mobility exponent - D_{fm}

$D_{fm}(SAC) = 2.37$ for $0.03 \ll \frac{F}{F_0} < 0.15$

$D_{fm}(SAC) = 2.50$ for $0.15 \ll \frac{F}{F_0} < 0.30$

$D_{fm}(SAC) = 2.57$ for $0.30 \ll \frac{F}{F_0} < 0.50$

$D_{fm}(SAC) = 2.64$ for $0.50 \ll \frac{F}{F_0} \ll 1.00$

Primary particle diameter - \[d_{pp}[m] = \alpha d_m^b \]

\[d_{pp}[m] = 1.62 \times 10^{-5} d_m^{0.39} \]

Dastanpour & Rogak
\[d_a = d_m \text{ in free-molecular and transition regimes}\]

\[d_{pp}[m] = 0.0125 d_m^{0.80} \]

Boies et al.

Primary particle diameter -

\[d_{pp}[\text{m}] = \alpha \cdot d_m^b \]

\[d_{pp}[\text{m}] = 1.62 \times 10^{-5} \cdot d_m^{0.39} \]

\[d_{pp}[\text{m}] = 0.0125 \cdot d_m^{0.80} \]

\[d_{pp} \] in free-molecular and transition regimes

\[d_m \] in free-molecular and transition regimes

\[d_m = d_m \] in free-molecular and transition regimes

\[E_{\text{I_n}} \] estimates are within ~ ±20%

Results: Validation of \(E_{I_n} \)

\[
E_{I_n} = \frac{E_{I_m}}{\rho_0 \left(\frac{\pi}{6} \right) a^3 - D_{fm} GMD \phi \exp \left(\frac{\phi^2 \log(GSD)^2}{2} \right)}
\]

Ground

\(c.f. \ R^2 = [-0.635, 0.102] \)

Cruise

\(c.f. \ R^2 = [-0.304, 0.156] \)

Application to fleet

- Need to estimate the BC mass emissions (E_{I_m})

$$E_{I_n} = \frac{E_{I_m}}{\rho_0 \left(\frac{\pi}{6}\right) a^{3-D_{fm}} GMD \phi \exp \left(\frac{\phi^2 \log(GSD)^2}{2}\right)}$$

- Sample of Aviation Environmental Design Tool (AEDT) dataset
 - 9th March 2006 23:15:04 to 11th March 2006 08:09:35
 - Flight levels from 15,000 ft to 43,000 ft
 - 3371 flights
 - US Flights \approx 3258
 - Asian Flights \approx 10
 - Transatlantic & EU Flights \approx 103
Results: Estimates of E_{I_m} at cruise

\[E_{I_n} = \frac{E_{I_m}}{\rho_0 \left(\frac{\pi}{6}\right) \alpha^{3-D_{fm}} GMD \phi \exp\left(\frac{\phi^2 \log(GSD)^2}{2}\right)} \]

![Graph showing comparison between measured and estimated E_{I_m} values with ±50% error range.](image-url)
Results: Uncertainty analysis

\[
\text{EI}_n = \frac{\text{EI}_m}{\rho_0 \left(\frac{\pi}{6} \alpha^3 - D_{fm} \text{GMD} \phi \exp\left(\frac{\phi^2 \log(GSD)^2}{2} \right) \right)}
\]

<table>
<thead>
<tr>
<th>Variable</th>
<th>Fixed F/F\text{00}</th>
<th>Mean (µ)</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>EI\text{m}</td>
<td>0.4</td>
<td>14.2 mg/kg</td>
<td>±50%</td>
</tr>
<tr>
<td>ρ\text{0}</td>
<td>0.4</td>
<td>1770 kg/m\text{3}</td>
<td>±8%</td>
</tr>
<tr>
<td>D\text{fm}</td>
<td>0.4</td>
<td>2.57</td>
<td>±27%</td>
</tr>
<tr>
<td>GMD</td>
<td>0.4</td>
<td>18.52 nm</td>
<td>±25%</td>
</tr>
<tr>
<td>GSD</td>
<td>0.4</td>
<td>1.736</td>
<td>±14.5%</td>
</tr>
</tbody>
</table>

Propagated uncertainty (σ/µ) ~ ±64%
Results: Sensitivity analysis

$E_{I_n} = \frac{E_{I_m}}{\rho_0 \left(\frac{\pi}{6}\right) a^{3-D_{fm}} GMD \phi \exp \left(\frac{\phi^2 \log(GSD)^2}{2}\right)}$

- Uncertainty in inputs propagates to uncertainty in E_{I_n}
- GMD, GSD and E_{I_m} are the most critical parameters
- A ±10% change in GMD will result in E_{I_n} varying by approximately -23% to +33%

![Sensitivity index chart](chart.png)
Results: Example flight

- New fractal aggregate approach leads to estimates that are ~2x higher than previous estimates
- There is additional dependence on particle size and morphology
Results: Comparison of fleet average E_{I_n}

Upper $\quad \quad 1.9 \times 10^{15} \text{ kg}^{-1}$

Mean $\quad \quad 1.2 \times 10^{15} \text{ kg}^{-1}$

Lower $\quad \quad 4.4 \times 10^{14} \text{ kg}^{-1}$

(a) $\times 10^{14}$

<table>
<thead>
<tr>
<th>Method</th>
<th>Average $BC\ E_{I_n}$ [#/kg-fuel]</th>
</tr>
</thead>
<tbody>
<tr>
<td>FA Approach</td>
<td>$1.04e+15$</td>
</tr>
<tr>
<td>Dopelheuer (2002)</td>
<td>$3.2e+14$</td>
</tr>
<tr>
<td>Barrett et al. (2010)</td>
<td>$9.05e+14$</td>
</tr>
<tr>
<td>Karcher (2016)</td>
<td>$7.82e+14$</td>
</tr>
<tr>
<td>FOX-ASAF Method</td>
<td>$6.5e+14$</td>
</tr>
<tr>
<td>ImFOX Method</td>
<td>$5.50e+14$</td>
</tr>
</tbody>
</table>
Implications for contrails

Contrail optical depth may be ~20% higher than with previous estimates.

220 K [210 K, 225 K]

<table>
<thead>
<tr>
<th>Input Scenario</th>
<th>BC $E I_n$ (kg⁻¹)</th>
<th>Mean Visible Optical Depth (τ)</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>1.2×10^{15}</td>
<td>$3 [3.5, 1.3]$</td>
<td>-21% [-23%, -53%]</td>
</tr>
<tr>
<td>Lower Bound</td>
<td>4.4×10^{14}</td>
<td>$2.36 [2.68, 0.61]$</td>
<td>-21% [-23%, -53%]</td>
</tr>
<tr>
<td>Upper Bound</td>
<td>1.9×10^{15}</td>
<td>$3.20 [3.6, 1.68]$</td>
<td>+7% [+3%, +29%]</td>
</tr>
<tr>
<td>Previous estimates</td>
<td>$\sim 6 \times 10^{14}$</td>
<td>~ 2.5</td>
<td></td>
</tr>
</tbody>
</table>
Conclusions

- New approach based on mobility of fractal aggregates provides more accurate Ei_n estimates than previous methods.

- Large uncertainties remain and sensitivity analysis show that GMD, GSD and Ei_m are most important parameters.

- Fleet average Ei_n of 1.2 $[0.44, 1.9] \times 10^{15}$ per kg of fuel.

- Application to a sample of aircraft activity data suggests average Ei_n are revised upwards by a factor of ~2. Previous estimates are within the lower bound.

- Contrail optical depth may be ~20% higher than previous estimates.
Future work

- Further validation.
- Integrate method into contrail model to quantify any change in contrail properties.
- Are models of ice nucleation in contrails appropriate for fractal aggregates?

- Particle losses when measuring EI_n through long sample lines:

Acknowledgements

• 2006 AEDT sample dataset used for this study was made available for climate research by FAA within the ACCRI research project.

• A. Boies for SAMPLE III.2 data (and all other collaborators) and comments.

• Skempton Scholarship and Lloyds Register Foundation for funding of R. Teoh’s PhD.
Thanks, questions?

m.stettler@imperial.ac.uk | www.imperial.ac.uk/people/m.stettler
Centre for Transport Studies | Department of Civil and Environmental Engineering Imperial College London
@TransEnvLab_IC
Aircraft particle mass \((EI_m) \) estimates

- Smoke number based
 - First Order Approximation v3 [1]
 - Aerodyne Research Inc. method [2]
 - Limited by accuracy of certification smoke numbers

- FOX method [3]
 - Smoke numbers are discarded
 - Semi-empirical model fitted to measurements
 - Improved BC mass estimates at ground level and at cruise

\[
C_{BC} \left[\frac{mg}{m^3} \right] \approx \dot{m}_f \left(A_{form} e \left(-\frac{6390}{T_{fl}} \right) - AFR A_{ox} e \left(-\frac{19778}{T_{fl}} \right) \right)
\]

Formation \quad Oxidation

Aircraft particle mass (E_{Im}) estimates

- ImFOX [4]
 - ‘Improved FOX’ method
 - Accounts for hydrogen content of fuel (H)
 - Quadratic equation for A_{form} and different equation for T_4
 - Different equations for global air to fuel ratio (AFR) at cruise and ground

\[C_{BC} \left(\frac{mg}{m^3}\right) \approx \dot{m}_f e^{13.6-H} \left(A_{form} e^{\left(-\frac{6390}{T_4}\right)} - AFR A_{ox} e^{\left(-\frac{19778}{T_{fl}}\right)} \right) \]

- From 2020: ICAO regulation
 - Certification test and limits on non-volatile particulate matter
 - Mass and number

Results: E_{I_n} versus E_{I_m}

SAMPLE III.2
http://doi.org/10.1080/02786826.2015.1078452

Modelled E_{I_n}
$R^2 = 0.985$
SAMPLE III.2
E_{n} dependence on engine thrust and altitude